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Abstract 

The group-theoretical method of reducing the polar 
(axial) tensor representation of the full rotation group 
has been explored and extended to obtain the second-, 
the third- and the fourth-order elastic coefficients for 
the 18 polychromatic crystal classes. The elastic 
coefficients obtained for all the classes are tabulated 
and the results obtained are briefly discussed. 

I. Introduction 
Many significant contributions on the study of the 
physical properties of crystals have been brought to 
light by several group-theoretical physicists during 
the past few decades. The number of non-vanishing 
as well as independent constants for the various phy- 
sical properties in respect of the 32 conventional 
crystal classes were derived in considerable detail 
using group-theoretical as well as tensor methods by 
Bhagavantam & Venkatarayudu (1951), Wooster 
(1979), Nye (1985) and others. The book by 
Bhagavantam (1966) enhances the use of the charac- 
ter method in studying the magnetic properties of 
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these 32 classes and the 58 magnetic (double-colour) 
point groups derived from them. In two of the earlier 
papers published by the author (Rama Mohana Rao, 
1987, 1988) the 18 applicationally significant poly- 
chromatic crystal classes (Indenbom, Belov & 
Neronova, 1960) were studied for three identified 
magnetic properties such as piezomagnetism and for 
six physical properties such as photoelasticity. The 
number of independent constants (ni) required to 
describe a chosen magnetic/physical property was 
obtained using a group-theoretical procedure also 
established by the author (Rama Mohana Rao, 1987). 

It is well known that the physical property of elas- 
ticity describes the relation between the stress field 
developed and the strains caused. Further, the applied 
stress as well as the resulting strain could be represen- 
ted by second-rank symmetric tensors. Bhagavantam 
& Suryanarayana (1949) and Jahn (1949) successfully 
enumerated the second- and third-order elastic 
coefficients for the 32 conventional crystal classes 
employing group-theoretical methods. With a slightly 
different approach to the application of the character 
method, following a suggestion made by Chelam 
(1961), Krishnamurty (1963) and Krishnamurty & 
Gopala Krishna Murty (1968) also derived these 
coefficients for the 32 conventional crystal classes. 
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It can be seen (Bhagavantam, 1966) that piezomag- 
netism is the appearance of a magnetic moment on 
the application of stress. As the physical property 
elasticity expresses the relation between the applied 
stress and the resulting strain, the connection between 
the two related phenomena - piezomagnetism and 
elasticity - is investigated in this note, in respect of 
the 18 polychromatic crystal classes that are 
piezomagnetic and the influence of stress on these 
magnetic classes is assessed. Accordingly the number 
of second-, third- and fourth-order elastic coefficients 
for each of the 18 classes is obtained here by extending 
the group-theoretical method (Jahn, 1949) of reduc- 
ing the polar tensor representation of the full rotation 
group through formulae for the symmetrical products 
of representations. The non-vanishing number of 
elastic coefficients obtained in this paper in conjunc- 
tion with the non-vanishing number of independent 
physical constants already obtained for these classes 
by the author in the preceding paper (Rama Mohana 
Rao, 1987) may provide a complete picture for 
describing their physical symmetry more elaborately. 

The importance of the idea of polychromatic sym- 
metry in deriving the similarity symmetry groups has 
already been explored and the utility of the colour 
symmetry groups in describing the stem and layer 
symmetry groups in higher-dimensional space has 
already been discussed (Roman, 1959; Zamorzaev, 
1963). The procedure for deriving the desired 
coefficients is outlined in § 2 and is exemplified with 
the help of the point group 23 that induces the class 
3(3)/2. Since a knowledge of the number of non- 
vanishing independent components of a physical 
property like elasticity is quite useful in identifying 
the class of crystals and in studying their physical 
properties (particularly those possessing higher sym- 
metries), the coefficients obtained are provided in 
Table 2 below. The notation adopted for the polychro- 
matic classes is due to Indenbom, Belov & Neronova 
(1960) and the nomenclature for the point groups is 
that of Hermann-Mauguin (International). 

2. The method 

The group-theoretical method of reducing the polar 
(axial) tensor representation of the full rotation group 
(Jahn, 1949) is extended in this section for finding 
the non-vanishing independent number of second-, 
third- and fourth-order elastic coefficients of the 18 
polychromatic crystal classes that were already found 
to be piezomagnetic (Rama Mohana Rao, 1987). The 
numbers of elastic coefficients obtained here are 
worked out for the first time. 

If V denotes the representation of a polar vector 
and Tisza's (1933) notation representing the sym- 
metrical product [ V 2] of V with itself is employed, 
the reduced forms of the representation for the sym- 
metrical second, third and fourth powers of [ V 2] 

Table 1. Reduction of  the representation D [ for the 
point group 23 

r ~ C~ C~j C~ 
A 1 1 1 1 
tE  1 1 to to* 
2E 1 1 to* to 
T 3 - 1  0 0 

x(D~) 5 l -~ -i 
x(D~) 7 -1 1 1 
x(  D~) 9 1 0 0 
x(D~) 11 -1  -1  - 1  
x(DD 13 1 1 1 
x (D~)  17 1 -I - 1  

n2 n 3 n4 n 5 n6 n8 

0 1 1 0 2 1 
1 0 1 1 1 2 

1 2 2 3 3 4 

which represent respectively the second-, third- and 
fourth-order elasticity can be given by 

[[ V2] 2] = 2Dg + 2D2 g + D g 

[[ vE] 3] = 3 D~ + 3 D g + D g + 2D4 g + D~ 
(2.1) 

[[ V2] 4] =4Dg + 5D g + D g +4D g + D g 

+ 2D6 g + D~. 

In (2.1), D[ stands for the representation of 
dimension (2L+1) of the group R~ which is even 
with respect to inversion. 

It has already been shown that the one-dimensional 
(1D) complex irreducible representation (IR) F of a 
crystallographic point group G induces a polychro- 
matic class G (p), p = 3, 4 or 6 (Rama Mohana Rao, 
1985) and the number of independent constants (ni) 
required to describe a magnetic/physical property in 
respect of the induced class G(P)is just the same as 
that number (n~) obtained before the IR F that 
induces G (p), for the considered property (Rama 
Mohana Rao, 1987). Accordingly, the appropriate 
number of elastic coefficients required for the 18 
polychromatic classes under consideration is 
obtained here by deriving the reduced form of D g 
for each of the ten crystallographic point groups 
containing 1D complex IRs. The point group 23 is 
taken to illustrate the method. 

It can be seen (Table 1) that the character table of 
the point group 23 contains a 1D total symmetric IR 
(A), a pair of 1D complex IRs (1E, 2E) and one 3D 
IR (T). It is well known that either of the 1D complex 
IRs induce the polychromatic variant 3(3)/2 (Inden- 
bom, Belov & Neronova, 1960; Rama Mohana Rao, 
1985). The enumeration of the numbers ni occurring 
before each of the distinct IRs of the group 23 is 
performed here by the known formula 

n ,=(1 /  N)  ~, hpX~r)(g)x~r')(R) (2.2) 
p 

by replacing x~r)(R) with x[D[(R)] ,  the character 
for the element R provided by the even parity func- 
tions of degree L. In (2.2), N denotes the order of 
the group G, h e represents the number of elements 
in the pth conjugate class and x(r')(R) denotes the 
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Table 2. Number of independent elastic coefficients 
of second-, third- and fourth-order needed by the 18 

polychromatic classes 

Serial Polychromat ic  Second Third Four th  
no. class G iv) order  order order  

1 6 (6) 3 8 19 
2 3 (6) 0 0 0 
3 3(3)/m ' 6  (3 3 8 19 
4 4 10 23 
5 3 (3) 7 18 42 
6 3(3)/m 4 10 23 
7 6(6)/m 0 0 0 
8 6(3)/m 4 10 23 
9 6(6)/m ' 3 8 19 

10 6(3)/m' 0 0 0 
11 3 (3) 7 18 42 
12 4 (4) 4 12 28 
13 ~(4) 4 12 28 
14 4(4)/m 0 0 0 
15 4(4)/m' 4 12 28 
16 3(3!/2 3 6 14 
17 6(3)/2 3 6 14 
18 6(6)/2 0 0 0 

character of the symmetry operation R in the ith IR 
F~of G. 

From Table 1, the reduced forms of D g worked 
out for the point group 23 can be seen to be 

D~ = A 

D2 g = 1E 1 + T 

D g = A + 2 T  

Dg= A + ~ EI + 2T (2.3) 

Dg=IEI+3T  

Dg=2A + ~E~ + 3T 

Dg = A + 2~E~ +4T. 

The above reductions of D g, when substituted in the 
RHS of (2.1), yield 

[[ V2] 2] = 2A + 31 E1 + 4 T 

[[ V2] 3] = 8A + 61 E1 + 12 T (2.4) 

[[ V214] = 14A+ 14~E~ + 28 T. 

Hence the desired elastic coefficients for the polychro- 
matic class 3(3)/2 are readily obtained when the 
numerical coefficients (3, 6, 14) of the 1D complex 
IR ~E~ are collected from the corresponding sym- 
metrical powers of [ V 2] provided by (2.4). The results 
obtained for the rest of the 17 classes are provided 
before the appropriate class in Table 2. 

3. Discussion 

It has already been established (Rama Mohana Rao, 
1987) that the 18 polychromatic crystal classes are 
magnetic and they exhibit magnetic properties like 
piezomagnetism. It is shown in this paper that 13 out 
of these 18 classes exhibit the physical property elas- 

ticity. The occurrence of the number of non-vanishing 
coefficients indicates that the presence of spin in the 
magnetic state of a crystal does not necessarily affect 
their physical property. 

It can be observed that the five polychromatic 
classes 5(6); 6(6)/m, 6 ( 3 ) / m ' ;  4(4)/m; 6 ( 6 ) / 2  induced by 
the 1D complex IR of the point groups 3; 6/m; 4/m; 
m3 in each of which the centre of inversion (i) is 
associated with the character -1  do not give rise to 
elastic coefficients of any order. It was observed that 
the same five classes did not require any piezomag- 
netic coefficients (Rama Mohana Rao, 1987). This 
coincidence is due to the fact that the elastic 
coefficients are characterized by polar tensors of even 
rank while the piezomagnetic coefficients are rep- 
resented by axial tensors of odd rank, both of which 
are centrosymmetric. 

The values of the elastic coefficients of various 
orders obtained here increase with the order. It is 
interesting to note that, in so far as the number of 
non-vanishing elastic coefficients is concerned, the 
polychromatic classes divide themselves into five sets 
with the groups contained in each set requiring the 
same number of coefficients. Also the six classes 6 (3), 
6(6); 6 ( 3 ) / m ,  6 ( 6 ) / m ' ;  3 ( 3 ) / m ,  3 ( 3 ) / m  ' generated by the 
point groups 6; 6/m; 3/m of the hexagonal system 
have split themselves into two sets requiring different 
numbers of elastic coefficients. Whereas the three 
classes 6(3); 6(3)/m; 3(3)/m require (4,10,23) 
coefficients, the other three classes 6(6); 6(6)/m'; 
3(3)/m ' require (3, 8, 19) coefficients. This is because, 
in the first category, the symmetry operations c2 and 
crh of 6/m; Crh of 3/m and c2 of 6 are associated with 
the character +1 in the inducing IR, whereas in the 
second set these very symmetry elements are associ- 
ated with the character -1  in the inducing IR. 

The elastic coefficients derived and tabulated in 
this paper were also obtained by the author simul- 
taneously utilizing the character method and the 
coefficients obtained were found to be identical with 
those derived in this paper. However, the group- 
theoretical method adopted in this work has the merit 
of avoiding the character calculations encountered in 
the later method. 

In the case of polychromatic crystal classes, from 
what has already been established earlier by this 
author (Rama Mohana Rao, 1987) and from the 
results obtained here, it can be concluded that the 
exhibition of piezomagnetic phenomena implies the 
exhibition of elasticity. The converse of the above 
statement can also be seen to hold good in respect 
of the polychromatic crystals, though it cannot be 
contended in general. That the converse need not 
always be true is evident from the elastic and 
piezomagnetic coefficients of crystals corresponding 
to the point groups 432, 2,3m, m3m (Bhagavantam & 
Pantulu, 1964; Bhagavantam & Suryanarayana, 
1949). 
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Abstract 

A data reduction procedure is presented to analyse 
neutron diffraction intensities from low-scattering- 
power systems contained in high-scattering cells. A 
careful analysis of the cell contribution is carried out 
and a numerical program to treat absorption and 
multiple scattering also due to the cell is developed. 

I. Introduction 

The purpose of a neutron diffraction experiment from 
non-crystalline samples is to obtain the static structure 
factor S ( Q )  from the measured intensity. However, 
the scattered neutron flux contains some background 
(scattering from container and environment) and is 
affected by absorption, multiple processes and inelas- 
ticity contributions apart from instrumental effects 
like beam inhomogeneity, counter efficiency and 
resolution. 

In the case of high-scattering-power samples or for 
low container contribution to the total scattered 
intensity, the data reduction can be done by following 
standard procedures like that outlined by Paalman & 
Pings (1962) after a subtraction of the multiple scat- 
tering due to the sample only according to Blech & 
Averbach (1965). On the other hand, when such 
experimental conditions do not prevail, i.e. when the 
container contribution is an appreciable fraction of 
the total measured intensity (over 10%), the simplify- 
ing approximation of a negligible-thickness cell in 
evaluating the multiple scattering no longer holds. 

One of the most widely employed approaches to 
the problem of multiple scattering from the sample 
and /or  the container makes use of Monte Carlo (MC) 
procedures (Bischoff, Yeater & Moore, 1972; Copley, 
1974, 1981; Copley, Verkerk, van Well & Fredrikze, 
1986; Meardon, 1973; Johnson, 1974) which allow 
for a simulation of the real experiment by following 
a given number of neutron histories. By using this 
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